距离中秋和国庆还有好些日子,但远在火星的祝融号和天问一号环绕器已经开始放长假了。
从今天起,太阳横插到了地球和火星之间,开始干扰地火通讯,在未来的大约1个月内,地面将不再主动向天问祝融发送信号。
如今已巡火百余日的祝融号,是我国首个行驶里程突破1000米的地外巡视器,为我国深空探测事业取得了新的辉煌。
北京航天飞行控制中心庆祝“祝融号”工作100天的大红屏 | BACC/微博@北京蓝龙
而近期的热播剧《你是我的荣耀》,虽说剧情纯属虚构,但主人公于途作为中国航天人的缩影,带领他的团队披荆斩棘近10年,在最后一集大结局中,成功将“搜神号”深空探测器送上太空。
所谓深空探测,指的是 离开地球,前往更遥远的太空深处 而 展开探测活动。
不论是剧中,还是在现实, 我国的深空探测器 从无到有,都已经远远飞出了地球摇篮, 向着更广阔的宇宙空间迈进。
今天就来聊一聊,现实中“于途”们所在的中国深空探测事业,并展望一下未来的“搜神号”们。
《你是我的荣耀》剧中的“搜神号”太阳系边际探测器
太长不看版
1.月球探测已完成“绕、落、回”三步走,未来将考察月球南极,建立国际月球科研站,实施载人登月;
2.首次火星探测任务已完成,未来将进行火星采样返回任务,开展载人登陆火星;
3.实施小行星采样返回任务,并对彗星作环绕探测;
4.环绕探测木星系统并在木卫四上着陆,飞掠探测天王星;
5.以“搜神号”为代表的太阳系边际探测,将从多个方向探测太阳系边际;
6.未来发展的愿景目标:突破10000天文单位飞行技术,开展恒星际探测。
嫦娥探月
“搜神号”定位为太阳系边际探测器,其目的地非常遥远,代表我国深空探测的未来。而在当下,我国深空探测尚聚焦于月球和火星。
月球,作为距离地球最近的天体,一直是各国开展深空探测的起点与基础。
2000年,《中国的航天》白皮书首次明确提出,开展以月球探测为主的深空探测发展目标——中国深空探测事业由此起步。
“绕、落、回”三步走
2004年,我国探月工程“嫦娥工程”正式立项,工程分“绕、落、回”三步走,计划2020年前完成任务目标。[1]
中国探月工程标识 | CNSA/微博@
2007年发射的 嫦娥一号实现 了我国探月一期 “绕”的目标 。
2010年发射的嫦娥二号,通过一次任务完成了月球、日地拉格朗日L2点、图塔蒂斯小行星的多目标探测,为后续“落”月奠定了基础。[1]
嫦娥二号与嫦娥一号飞行轨道示意图 | 新华网
2013年发射的 嫦娥三号 成功着陆于月球虹湾以东地区,我国由此 突破地外天体软着陆技术 ,实现了探月二期“落”的目标。
“玉兔号”月球车则实现了我国首次地外天体的原位和巡视探测。
嫦娥三号着陆器与玉兔一号月球车 |CNSA
2018年发射的 嫦娥四号 实现了 人类探测器首次着陆月球背面 的壮举,这也是 中国航天取得的首个世界第一 。
玉兔二号月球车由此开始了它的月背征途,至今仍在正常工作。截至2021年8月底,玉兔二号已行驶了约800米。
嫦娥四号着陆器与玉兔二号月球车 | CNSA
2020年发射的 嫦娥五号 着陆于月球风暴洋北部的吕姆克山附近,并成功采得1731克月壤样品, 实现了月面采样返回 。
这是我国最为复杂的一次深空探测任务,标志我国探月工程圆满实现了“绕、落、回”三步走的目标。
嫦娥五号着陆器全景相机在采样后环拍成像 | CNSA
考察月球南极
前三期任务七战七捷,但我国的探月工程并未止步于此。放眼未来,已规划的 探月四期工程将对月球南极展开一次综合探测 ,为此后各国一同建立月球科研基地验证部分技术,做一些前期探索。
四期工程的型号任务包括嫦娥六号至八号(有时嫦娥四号也算在其中),都将由长征五号发射。
探月四期工程规划目标 | 21.6.23港大胡浩讲座《九天揽月》
嫦娥六号与嫦娥七号均计划于2023-2024年发射。
嫦娥六号 为嫦娥五号备份,2017年已完成研制工作,计划着陆月球背面南极-艾特肯盆地(嫦娥四号着陆地),执行 月背采样返回任务 ,这将是继嫦娥五号后的第二次月球采样任务。
嫦娥六号月背采样任务概述 | 21.6.23港大胡浩讲座《九天揽月》
嫦娥七号全重8.2吨,由轨道器、着陆器、巡视器、小型飞跃探测器、中继星五部分组成,将对月球的地形地貌、物质成分、空间环境进行一次综合探测任务,并将与俄罗斯月球26号展开任务级合作。
其中, 飞跃探测器 是最大亮点,能够以自带动力飞入月球南极撞击坑底部的永夜区, 探测水冰的分布和丰度 。
嫦娥七号探测器CG动画 | 航天五院总体部
嫦娥七号任务还将部署一颗中继星,运行在300 × 8600 km × 54.8°的环月椭圆冻结轨道,为探月四期任务的探测目标——月球南极地区提供中继通信服务。[2]
嫦娥七号中继星新构型及轨道示意图 | 论文[2]
嫦娥八号 预计于2027年前后发射,除继续进行科学探测试验外,将着重开展一些月面试验,以 验证月球科研基地构建所需的关键技术 。
嫦娥八号探测器示意图 | 《国际月球科研站合作伙伴指南》
国际月球科研站
在探月四期工程的基础上, 中国将与俄罗斯展开合作,共同建设国际月球科研站 ,并欢迎有意愿的国家参与其中。
国际月球科研站建设将分为“勘、建、用”三个工程阶段,计划2025年至2035年间分两阶段实施“建”站。2025-2030年,完成建站所需相关技术验证;2030-2035年期间,中俄利用各自的重型运载火箭共同实施ILRS-1至ILRS-5五次大型建站任务,最终建成从月轨到月面多层次的 长期无人自主运行、远景有人参与 的综合性科学实验设施。
国际月球科研站建设发展阶段规划 |《国际月球科研站合作伙伴指南》
国际月球科研站主要建站任务组成及系统定义 |《国际月球科研站合作伙伴指南》
国际月球科研站概念图 |《国际月球科研站合作伙伴指南》
当我国主导的国际月球科研站逐步建成时,重型运载火箭也将服役,我国的载人月球探测便近在眼前。
有人月球探测规划
目前,我国载人登月飞行器、新一代载人飞船、新一代载人运载火箭(921火箭)都已进入研制阶段。
根据现有论证方案, 中国首次载人登月最快可在2025至2030年间实现 ,计划使用2发新一代载人火箭分别发射载人飞船和登月着陆器,二者在环月轨道上交会对接,航天员转移至着陆器后登陆月球。
后续从月球返回地球的流程,则与阿波罗计划、嫦娥五号等大同小异。
921火箭及其载人登月方案 | 21.6.24港大龙乐豪讲座《长征火箭与中国航天》
921火箭载人登月技术架构 | 21.8.29龙乐豪讲座《长征火箭与中国航天》
依据论文设想,未来我国载人月球探测任务将围绕“建立可供航天员长期驻留、生活、进行科学作业与生产的月球科研站”这一目标展开,任务可划分为3个阶段:
- 实施登月阶段 。通过数次无人与有人登月任务,建成月面移动实验室,一次任务具备不少于7天5次出舱活动能力。
- 驻月能力拓展阶段 。建立起可供航天员中期月面驻留与生存的中小型月面活动支持系统,开展月面科研试验活动。
- 月球科研站阶段 。通过人货分落形式,逐步建设起长期运行的月球科研站,根据任务需求可设立多个功能区域。[4]
月球科研站建设设想图 | 论文[3]
月球科研站功能分区规划 | 论文[4]
此外,内部空间巨大、可提供天然防护的月球熔洞,是未来建立地下载人月球站的优势位置之一。
未来我国将 开展月球熔洞探测 ,旨在实现人类首次进入地外天体地下空间,并 探索建立载人月面长期驻留环境的潜在场所和资源 。
这一阶段的探测也将分为3个阶段:无人设施进入阶段、航天员进入阶段、月球站改造阶段。[4]
月球熔洞分布 | 论文[4]
天问探火
就在嫦娥任务完成前三期目标的同一年,我国的深空探测已经朝着更远的目标——火星出发了。
天问一号首探火星
2020年7月23日, 天问一号 探测器在海南文昌由“胖五”发射升空,这是 我国首次自主火星探测任务 。
2021年2月10日,它顺利进入环火轨道。经过3个月的着陆区地形地貌考察后,着陆器于5月15日成功着陆火星乌托邦平原。
我国首辆火星车祝融号则于5月22日驶至火星表面,正式开始了它的探火之旅。
中国行星探测工程天问一号任务标识 | CNSA
天问一号探测器深空自拍照 | CNSA
如今, “祝融号”火星车圆满完成既定巡视探测任务 ,行驶里程已突破1000米。但它不会就此停下,还将继续向乌托邦平原南部的古海陆交界地带进发,获取更多科学数据,揭开更多火星奥秘。
天问一号环绕器在日凌结束后,则将择机进入遥感使命轨道,开展火星全球遥感探测。
天问一号着陆器与祝融号火星车合照 | CNSA
祝融号对天问一号着陆进入器的降落伞与背罩近距离成像 | CNSA
中国航天人依靠自己的力量,筹划了10年,奋斗了6年,第一次自主探火,便 一次性完成“绕、落、巡”三个成就 ,不可谓不伟大!
火星采样返回
下一个阶段,火星采样返回任务将于2028-2030年实施,疑似命名为“天问二号”,以一发重型运载火箭或一发长征五号 + 一发长征三号乙的形式发射。
天问二号等后续深空探测任务相关信息 | 21.6.24港大龙乐豪讲座《长征火箭与中国航天》
根据相关论文资料,火星采样返回任务发射窗口日期持续20天,每天的窗口时间约5分钟, 从发射到样品返回需要约3年时间,采样目标为1千克 。
探测器由着陆上升器与轨道返回器两部分组成,前者包括巡航器、着陆器、两级上升器,后者包括轨道器和返回器,各器详细质量如下。[8]
火星采样返回探测器结构组成与各器质量 | 论文[8]
经过近7个月地火转移飞行后,着陆上升器在靠近火星时,首先与巡航段分离,之后采取弹道升力式的办法直接进入火星大气,这与美国好奇号/毅力号类似。
降落着陆为“降落伞+动力下降”方案,与天问一号基本相同。
着陆成功后,在地面测控支持下,采集火星样本。样品在被封装至上升器后,两级上升器适时发射,进入400~500千米高的环火轨道,之后完成与轨道返回器的交会对接,样品容器转移等动作,这与嫦娥五号类似。
此后,轨道返回器与上升器分离,等待合适的窗口执行变轨动作,进入火地转移轨道。最终返回舱将与轨道器分离,独自携带样品返回地球。[8]
基于天问一号构型的火星采样返回轨道器示意图 | 论文[6]
载人登陆火星
载人登火是火星探测的究极之路 ,是我国建设航天强国的必然选择,对探索地外生命、星际移民、推动科技发展、提高国家地位和促进人类社会进步等具有重要意义。
航天一院院长王小军介绍和分析过我国载人登火任务的初步方案。 任务可能于2030至2040年代开展 ,计划采用安全性高的人货分运模式,地火转移从高地球轨道(HEO)出发。
每次任务需要发射7发长征九号重型运载火箭,其中:1发发射摆渡级,3发发射载货转移级,1发为摆渡级加注燃料,2发发射载人转移级。此外,还有1发921载人火箭用于发射载人飞船。
长征九号重型火箭论证方案 | 21.8.29龙乐豪讲座《长征火箭与中国航天》)
摆渡级负责将载货转移级和载人转移级摆渡至HEO,载货转移级负责将物资设备送达火星,载人转移级在与载人飞船对接后将航天员送至火星。
航天员计划 在火星停留500天 ,任务结束后,再由载人转移级送回地球。[9]
载人火星探测典型任务模式架构方案 | 论文[9]
载人火星探测的载人转移级构型示意图 | 论文[9]
总的来说,载人登火任务由于飞行距离远、转移时间长、在轨组装次数多、多阶段接力飞行等多方面因素,其任务架构复杂性和所需攻关的技术难题都将是前所未有的。[9]
小天体探测
除了月球和火星,小行星与彗星这类小天体也是深空探测的热门目标。
国外小天体探测历程 | 论文[5]
我国至今则仍未真正进行过以小天体为目标的深空探测任务,但 嫦娥二号 再扩展任务阶段,于2012年12月13日 对图塔蒂斯小行星进行了近距离飞越探测 ,为我们深入开展小行星探测奠定了实践基础。[5]
嫦娥二号拍摄的图塔蒂斯小行星表面各种特征地貌 | 论文[4]
我国小天体探测任务已于2021年初开始工程实施,任务可能命名为“ 郑和号 ”,将在2024-2025年使用长三乙或长七甲火箭发射,计划实施近地小行星2016 HO3取样返回和主带彗星311P/PANSTARRS环绕探测任务。[7]
郑和号小天体探测器构型及飞行过程示意图 | 论文[7]
郑和号预计在发射约1年后飞抵小行星2016 HO3,之后进行约1年的近距探测并实施采样。
为确保成功,郑和号准备了两种采样方式:附着采样(利用4个末端带钻头的机械臂以锚定方式着陆小行星)和短暂接触分离采样。采样完成约半年后,携带样品的返回舱返回地球。
轨道器则继续飞行约7年,依次飞掠借力地球、火星,利用引力弹弓加速,最终在2033-2034年飞抵主带彗星311P,而后实施311P环绕探测,为探寻地球水的起源提供线索。[7]
近地小行星2016 HO3的轨道及相对地球运动状态示意图 | NASA/JPL-Caltech
木星系探测及行星际穿越
除了前面提及的内太阳系,我国未来的深空探测计划还将向更遥远的外太阳系进发。
我国的木星系探测及行星际穿越探测任务计划实现 木星系环绕探测 与 天王星飞越探测 ,预计将于2029-2034年由长征五号火箭发射。
探测器由木星系环绕器和行星际飞越器组成,前者4吨,后者1吨,总质量5吨 。[10]
木星系及行星际穿越探测飞行轨迹 | 论文[11]
为使行星际飞越器能在2049年前飞越天王星,飞行过程中将多次飞掠行星借力加速,最佳的最佳的引力弹弓飞行序列为,即由地球出发后依次飞掠金星、地球、地球、木星,最终飞掠天王星)。[10]
四种序列的行星际飞行任务轨道参数对比 | 论文[10]
木星系环绕探测器此前存在两种方案:一是木星-木卫四轨道器(Jupiter Callisto Orbiter, JCO),二是木星系统观察者(Jupiter System Observer, JSO)。
前者的分系统任务为 在木卫四开展着陆探测 ;后者计划对木卫一开展飞掠探测,且在任务后期将飞往日木拉格朗日L1点。
就最新消息来看,似乎木星-木卫四轨道器的方案被选中。该探测器有可能被命名为“甘德”,以纪念《甘石星经》中中国古代天文学对世界的贡献。[12]
木卫四(上)与火山喷发中的木卫一(下) | NASA
太阳系边际探测
《你是我的荣耀》 剧中的“搜神号” ,并非完全虚构,而 是未来我国太阳系边际探测任务的组成部分 。
该任务的近期目标为 2049年前后抵达100个天文单位(AU)左右的太阳系边际 ,探测研究太阳系及行星的起源与演化、太阳系边际及邻近星际空间特性、行星天体物理等科学问题。
远期目标为 到21世纪末,突破1000AU飞行技术 ,飞抵太阳引力透镜焦点区域附近,开展引力透镜效应观测、验证广义相对论等探索工作。
未来发展的愿景目标为 突破1万AU飞行技术 ,对5~10 万AU的太阳系引力边际, 开展恒星际探测 并取得重大科学发现。[13]
我国太阳系边际探测三期目标 | 论文[13]
近期太阳系边际探测任务又分为3次,前2次均使用长征五号火箭发射。
第1次为日球层鼻尖正向探测,飞往日球层头部,发射窗口在2024-2025年,计划飞掠木星、天王星、半人马族小天体等天体。
第2次为日球层鼻尖反向探测,飞往日球层尾部(该区域探测尚属国际空白),发射窗口在2027-2030年,可飞掠火星、木星、海王星等天体。
第3次任务为日球层极区探测,计划2030年前后发射,将使用新运载火箭、电推技术、核反应堆等技术,实现6AU/年以上的飞行速度。[13-14]
太阳系日球层结构示意图 | 论文[13]
满足任务约束的太阳系边际探测飞行序列及飞行轨道示意图 | 论文[14]
前2次任务的探测器主构型一致,均采用同位素电池为能源,可搭载50千克科学载荷。所用推进系统有两种方案,一为3.4吨的嫦娥三号改进构型,二为800kg的电推+太阳翼构型。 [13]
基于同位素能源的太阳系边际探测器主构型 | 论文[13]
第3次任务计划采用2800千克的10kWe级核反应堆构型, 即“搜神号”所用构型 ,其一端是核反应堆电源,另一端是探测器,两端通过可展开桁架结构连接,可搭载100千克科学载荷。
“搜神号”所用的核反应堆构型太阳系边际探测器 | 论文[13]
相比同位素电池,核反应堆电源功率更大、成本更低。推进系统则采用高比冲的离子电推进,从而减少所需燃料,增大总冲,为长时间深空飞行提供超过20000小时的动力。
此外,超远距离深空测控通信技术、深空自主技术、高可靠长寿命技术、行星际轨道设计与优化技术、新型科学载荷技术,都是“搜神号”必需突破并掌握的技术。
基于此核反应堆构型的探测器,还可开展 海王星环绕探测 任务。探测器可在2028~2031年发射,2040年前到达海王星实现极轨环绕探测;飞行途中, 至少顺访1颗主带小行星、1颗半人马小天体;抵达海王星时利用穿透探测器,实现海王星大气和海卫一的穿透探测。[15]
海王星环绕探测概念图 | 论文[15]
回望中国深空探测发展之路,从嫦娥一号到天问一号,无数“于途”们为之奋斗,实现了从近地到深空,从月球到火星的跨越。如今的中国人有了自己的月球、火星图像以及月壤样品。
未来,我们还将脚踏实地,持续开展深空探测任务,探索更多宇宙奥秘,奔赴更远的星辰大海。
相信有朝一日,月球和火星将留下中国人的脚印,人类也必将冲出地球摇篮。
航天之父齐奥尔科夫斯基说过:“地球是人类的摇篮,但人类不可能永远生活在摇篮里”
参考文献
[1] 叶培建,黄江川,孙泽洲等.中国月球探测器发展历程和经验初探[J].中国科学:技术科学,2014,44(06):543-558.
[2] Zhang Lihua. Development and Prospect of Chinese Lunar Relay Communication Satellite[J]. Space: Science & Technology,2021,2021:1-14.
[3] Zou et al., of Chinas e and the and for Change-7, 51 and , 2020
[4] 张崇峰,许惟扬,王燕.载人月球探测月面活动发展设想[J].上海航天(中英文),2021,38(03):109-118.
[5] 张荣桥,黄江川,赫荣伟,等.小行星探测发展综述[J].深空探测学报,2019,6(05):417-423+455.
[6] 张玉花,王献忠,褚英志,等.我国首次自主火星探测任务中环绕器的研制与实践[J].上海航天(中英文),2020,37(05):1-9.
[7] Zhang Tao, Xu Kun, Ding Xilun. China’s ambitions and challenges for asteroid–comet exploration[J]. Nature Astronomy, 2021, 5(8) : 730-731
[8] Jiang X , Tao T , L . of for Mars Probe [C]// 66th . 2015
[9] 王小军,汪小卫.载人火星探测任务构架及其航天运输系统研究[J].中国航天,2021(07):8-14.
[10] 田百义,张磊,周文艳,等.木星系及行星际飞越探测的多次借力飞行轨道设计研究[J].航天器工程,2018,27(01):25-30
[11] 陈诗雨,杨洪伟,宝音贺西.木星系探测及行星穿越任务轨迹初步设计[J].深空探测学报,2019,6(02):189-194.
[12] Jones. by China Could [EB/OL]. , 2021.
[13] 吴伟仁, 于登云, 黄江川,等.太阳系边际探测研究[J].中国科学:信息科学,2019,49(01):1-16.
[14] 田百义,王大轶,张相宇,等.太阳系边际探测飞行任务规划[J].宇航学报,2021,42(03):284-294.
[15] 于国斌,汪鹏飞,朱安文,等.基于10 kWe核反应堆电源的海王星探测任务研究[J/OL].中国科学:技术科学:1-11.
作者:Phil Leaf
编辑:Steed
本文来自果壳,未经授权不得转载.
如有需要请联系sns@guokr.com